Meaning of things


What is air/barometric pressure

Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa; 1,013.25 mbar), which is equivalent to 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.[1] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth’s atmospheric pressure at sea level is approximately 1 atm.

What is temperature?

 is a physical quantity that expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder or hotter.

Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have used various reference points and thermometric substances for definition. The most common scales are the Celsius scale (formerly called centigrade, denoted as °C), the Fahrenheit scale (denoted as °F), and the Kelvin scale (denoted as K), the last of which is predominantly used for scientific purposes by conventions of the International System of Units (SI).

The lowest theoretical temperature is absolute zero, at which no more thermal energy can be extracted from a body. Experimentally, it can only be approached very closely (100 pK), but not reached, which is recognized in the third law of thermodynamics.


What is irradiance?

The solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. It is looking at the Sun as we would a star rather than as a image.

The solar spectral irradiance is a measure of the brightness of the entire Sun at a wavelength of light. Important spectral irradiance variations are seen in many wavelengths, from the visible and IR, through the UV, to EUV and X-ray. As we look at the solar irradiance we should remember that space weather is related to ionization, while climate is related to absorption of heat.

Measuring the spectral irradiance is important because different wavelengths (or colors) of sunlight are absorbed in different parts of our atmosphere. We feel warm because of the visible and infrared radiation that reaches the surface. Ultraviolet light creates the ozone layer and is then absorbed by that ozone. Higher still ultraviolet light creates the thermosphere, which is ionized by light at the short wavelengths of the extreme ultraviolet (EUV). Because radio communications are affected by the created ions, changes in the solar EUV output are a primary Space Weather concern.

Energy from other sources also enters our atmosphere. A table of some of them is shown below. Note that the energy input from Joule heating, a coupling of the ionosphere to the magnetosphere, can be about the same as from solar EUV!

Cumulus type 2 (Cu2)

What is wind?

Wind is the natural movement of air or other gases relative to a planet’s surface. Wind occurs on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth. The two main causes of large-scale atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet (Coriolis effect). Within the tropics and subtropics, thermal low circulations over terrain and high plateaus can drive monsoon circulations. In coastal areas the sea breeze/land breeze cycle can define local winds; in areas that have variable terrain, mountain and valley breezes can prevail.

Dawn Swansea Bay

What is rain?

Rain is liquid water in the form of droplets that have condensed from atmospheric water vapor and then become heavy enough to fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides suitable conditions for many types of ecosystems, as well as water for hydroelectric power plants and crop irrigation.

What is lightning

Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions, both in the atmosphere or with one on the ground, temporarily neutralize themselves, causing the instantaneous release of an average of one gigajoule of energy.[1][2][3] This discharge may produce a wide range of electromagnetic radiation, from heat created by the rapid movement of electrons, to brilliant flashes of visible light in the form of black-body radiation. Lightning causes thunder, a sound from the shock wave which develops as gases in the vicinity of the discharge experience a sudden increase in pressure. Lightning occurs commonly during thunderstorms as well as other types of energetic weather systems, but volcanic lightning can also occur during volcanic eruptions.

The three main kinds of lightning are distinguished by where they occur: either inside a single thundercloud, between two different clouds, or between a cloud and the ground. Many other observational variants are recognized, including “heat lightning”, which can be seen from a great distance but not heard; dry lightning, which can cause forest fires; and ball lightning, which is rarely observed scientifically.

Humans have deified lightning for millennia. Idiomatic expressions derived from lightning, such as the English expression “bolt from the blue”, are common across languages. At all times people have been fascinated by the sight and difference of lightning. The fear of lightning is called astraphobia.

Return to TOP / HOMEPAGE